
Morris 1

Tyler Morris

Professor Lewicki

CIST 1451

December 11, 2018

Amateur Radio

 Amateur Radio or ham radio as it is often called is a two-way radio service that is

licensed by the Federal Communications Commission (FCC), at least in the United States. Other

countries have their own licensing authorities, but all amateur radio operators must be licensed in

order to transmit on any amateur frequency. According to the FCC, “The amateur and amateur-

satellite services are for qualified persons of any age who are interested in radio technique solely

with a personal aim and without pecuniary interest.” Twenty-seven frequency spectrum

allocations exist internationally for amateur radio operators to use. Amateur radio operators are

also allowed to transmit, “some 1,300 digital, analog, pulse, and spread-spectrum emission

types…,” according to the FCC. Amateur operators are also given the ability to design, create,

modify, repair, and experiment with radio equipment within the designated frequency spectrum

allowed by the class of license the user holds.

Currently there are three license classes issued by the Federal Communications

Commission: Technician, General, and Extra. Each class of license is earned through

examination of a potential operator’s skill and knowledge in operating an amateur radio station.

The lowest level is the technician class license and the highest level is the extra class license

(FCC). The exam questions come from a pool of questions that have been made public,

according to the FCC. The technician class exam consists of thirty-five multiple choice questions

regarding rules, regulations, and the safety of operating an amateur radio station. The general

Morris 2

class license exam also has thirty-five questions and is more difficult as it includes more radio

and electronics theory. The extra class license exam, being the highest class of license available

from the Federal Communications Commission consists of fifty multiple choice questions that

contain a lot of radio theory, electronics theory, safe operating practices, more rules, regulations,

and limits.

 Amateur radio is also used as an emergency communications service during times of

disaster (ARRL). Typically, amateurs are used during emergencies that cause a loss of power and

damage to infrastructure-dependent communications methods (i.e. Cell Phones). Amateur radio

operators are often involved in local, state, and national communications organizations. One

local organization is the McKean County Emergency Communications Team, which is part of

the McKean County Emergency Management Agency. At the national level, amateur operators

can work through the Radio Amateur Civil Emergency Service which is coordinated by the

Federal Emergency Management Agency (FEMA) and the Amateur Radio Emergency Service

(ARES), which is coordinated by the American Radio Relay League (ARRL). Some amateur

radio operators may also be involved in Skywarn which is coordinated by the National Weather

Service. Amateurs involved in Skywarn provide weather information to the National Weather

Service for analysis and dissemination to the public (ARRL).

A repeater is a radio that listens on one frequency and simultaneously retransmits that

signal on another frequency (Butler). Typically, repeaters are used on Very High Frequency

(VHF) and Ultra High Frequency (UHF) radio frequencies. The reason for this is that VHF and

UHF radio waves do not travel very far. A well-placed repeater can easily cover hundreds of

miles. Repeaters generally produce higher power than a typical mobile or handheld radio and

usually use very efficient high gain antenna systems (Butler). Basically, this means that a user’s

Morris 3

weak, low powered signal is being retransmitted with higher power output into a better antenna

and in turn this produces a greater coverage area.

Figure 1: How a Repeater Works

One of the more interesting components of a repeater is the duplexer. This allows the

repeater station to use a single antenna for both transmit and receive. According to Donald

Butler, duplexers often look like large tall cans. A duplexer is a device that isolates the transmit

and receive frequencies so that the repeater does not hear itself. A duplexer also has a very

narrow band pass, which allows the repeater to hear stations on its receive frequency and to

reject other signals on nearby frequencies (Butler). This helps a repeater to reject signals from

nearby repeaters or transmitters and to reject radio frequency (RF) interference (Butler). A

repeater can be setup without duplexers, however it will require a very large spacing between the

transmit & receive antennas and a larger frequency offset.

Frequency offsets are used due to repeaters transmitting on one frequency and receiving

on another. The actual amount of offset between the two frequencies varies by the band. For

instance, the popular VHF band two meters (144-148Mhz) typically has an offset of 600

kilohertz, according to Donald Butler. The popular UHF band, 70 centimeters (420-450Mhz in

the USA) typically has an offset of 5 megahertz (Butler). These offsets typically increase as the

frequency increases; this is to avoid having the transmitter and receiver interfere with one

another.

Morris 4

One way that repeaters avoid interfering with each other is through the use of Continuous

Tone Coded Squelch System (CTCSS) tones or PL tones. According to Butler, PL is an acronym

meaning “private line” and is Motorola’s proprietary name for CTCSS. These tones allow a

repeater to reject all signals without the proper CTCSS tone encoded in the radios transmission

to the repeater. This is helpful in repeater-congested areas where many repeaters’ frequencies

may be close or the same (Butler). Essentially, if a repeater is using CTCSS tones, it will not

hear radio stations that are not sending that tone.

 Marconi first communicated across the Atlantic Ocean in 1901, but prior to his

experiments, James Clerk Maxwell theorized electromagnetism in 1873. Marconi’s first

communication across the Atlantic used high power and giant antennas. Due to the high power,

interference was a problem leading the United States Congress to approve the Radio Act of 1912.

This piece of legislation required amateur radio operators to be licensed by the Federal

Communications Commission and limited these amateurs to a wavelength of 200 meters or

frequencies below 1,500 kilohertz (ARRL).

 The American Radio Relay League was founded by Hiram Percy Maxim in 1914. Maxim

found that sending messages over the radio could be done more reliably if there were relay

stations. This led Maxim to create the American Radio Relay League which was an organization

of amateur radio operators who acted as these relay stations. Amateurs began testing the

transmission and reception of signals across the Atlantic in 1921. According to the American

Radio Relay League, “…by July 1960 the first two-way contact via the Moon took place on 1296

Mhz.” Today, amateur radio operators use various modes of communication bouncing signals off

the moon, the ground, and the ionosphere. Amateur radio operators exist in almost every country

on Earth and range in age from ten years old to more than one hundred years old (ARRL).

Morris 5

Modern amateur radio includes more ways to communicate than just voice or Morse

Code. Amateur radio operators use a variety of different modes including Digital Smart

Technology Amateur Radio (DSTAR) and Digital Mobile Radio (DMR). DSTAR was designed

for amateur radio by the Japanese Radio League (DSTAR Info). DMR on the other hand was

designed for commercial use and later adapted by amateur radio operators to work as an amateur

radio system. These different modes can be used to send voice, text messages, images, files, and

all kinds of other data types.

DSTAR or Digital Smart Technology Amateur Radio, is a mode that allows digital voice,

text messages, files, pictures, and GPS location data to be transmitted and received. DSTAR also

allows repeaters to link to other repeaters through the internet. Repeaters may also be connected

together in what are called “reflectors” which are basically like conference servers (DSTAR

101). Repeaters are linked by the user’s transceiver by sending an eight-character code that tells

the repeater what to do (DSTAR 101). For instance, to link to the local DSTAR repeater who’s

callsign or license number is “KC3ESS”, the following code would be used without quotes,

“KC3ESSBL”. The callsign and the module, which in this case is “B”, is used along with the “L”

for “link”. The module indicates the frequency of the repeater where “B” is 70cm or around 440

megahertz and “C” is 2m or around 144 megahertz. There are also other commands which are

always in the eighth character location such as the unlink command which is the letter “U”, the

echo command which is the letter “E”, and the information query command which is the letter

“I”. Since callsigns vary in length from three-character special event stations to six-character

station callsigns, all commands are padded with spaces if there are not enough characters to

reach that eighth position.

Morris 6

Digital Smart Technology Amateur Radio also allows slow speed data to be sent over the

radio. This data can include GPS location data, images, and even files. Some DSTAR radios,

such as those from Icom, a manufacturer of radios, can be interfaced with Icom’s Android and

iOS app called, “RS-MS1A.” This app allows full control of the transceiver as well as the ability

to send photographs and files through the radio. According to Icom America, a software called

DRATS was designed for amateur radio first responders within the Amateur Radio Emergency

Service (ARES) and the Radio Amateur Civil Emergency Service (RACES) and can be used

with any DSTAR radio. The software includes the ability to chat via instant message, send

structured emergency forms, send GPS position reports, and transfer files with error detection

over amateur radio (Icom America).

DRATS can also be used to send email messages to regular email users, provided the

emails are not business related and there is no money involved. Amateur radio is not for profit

and to use it to make money is illegal. DRATS users can send data through radio waves to

another DRATS station called an “internet gateway” and from there the message or email can be

sent to any regular email user (Icom America). According to Icom America’s DRATS brochure,

this process can also be reversed allowing regular emails to be sent to an amateur radio station

over radio.

 Digital Mobile Radio or DMR for short, is another digital communications mode that is

similar to DSTAR. What makes DMR different according to Bentvision LLC, is that it uses

Time Division Multiple Access or TDMA to divide a single frequency into two “timeslots.”

These two timeslots can support two completely different conversations simultaneously on the

same frequency. Instead of using a callsign to identify the radio, like DSTAR uses, DMR utilizes

a unique radio identification number. This radio ID number uniquely identifies your radio on the

Morris 7

DMR network (Bentvision LLC). Radio ID numbers are very similar to a computer’s IP address

or a person’s telephone number.

Much like DSTAR, DMR uses the internet to connect repeaters together around the

world. Digital Mobile Radio utilizes what are called “talkgroups” to organize or group unique

radio identification numbers together. This allows a DMR repeater to connect to a talkgroup and

hear all of the stations that are connected as well as transmit to all of the connected stations, very

similar to a DSTAR reflector (Bentvision LLC). Talkgroups are also identified by a unique

number which is used to connect a repeater to them. Talkgroups can be static or dynamic

meaning a repeater can have a static or permanently connected talkgroup or the repeaters may

allow dynamic talkgroups in which end users are able to connect to various talkgroups as they

please (Bentvision LLC). There are a couple of different DMR networks, one of which is the

Brandmeister network (Bentvision LLC).

 BrandMeister is an operating software for DMR master servers or repeaters. This

software allows these servers to communicate with each other amongst a worldwide

infrastructure network consisting of amateur radio digital voice systems (BrandMeister).

According to BrandMeister, their network allows the following features: two-way text

messaging, sending position reports, making private calls to other amateur radio operators,

making worldwide group calls to other amateur radio operators, and roaming between repeaters.

 For my capstone project, I wanted to put together a digital multimode amateur radio

repeater that would switch between DSTAR and DMR depending on the signal it receives. I

wanted to use a Linux distribution designed for making the Raspberry Pi handle this task. The

software is called Pi-Star, which has basically become the standard software for MMDVM style

radio interface boards. The plan was to add some extra features including remote control through

Morris 8

the ircDDBRemote app and scheduling of automatic linking on DSTAR. The repeater would also

include a Nextion brand human machine interface touch screen display. This would allow the

displaying of callsigns, names, and locations heard by the repeater as well as a control interface

to shut down or reboot the Raspberry Pi. Lastly the project was to be enclosed in a 3D printed

case that I would design.

 I wanted to do this as my capstone project because it was a way to combine my love for

ham radio with my passion for computers. It was also a way to experiment with a repeater on a

small scale so that I could help other amateur radio operators in the surrounding area with

converting their standard repeaters into digital multimode repeaters. As you will see below, I

learned quite a bit more about how these digital repeaters work and how I can better implement

the technology on a larger scale within the community.

 The first thing I had to do was decide on the hardware and software I would use for this

project. I considered building a full-size repeater, but due to cost and demonstration limitations, I

decided to use a cheaper Chinese clone of an MMDVM_HS_HAT_DUPLEX, dubbed a

JumboSpot. Basically, this is a full repeater on a single printed circuit board. It utilizes two radio

transceiver chips and a microcontroller. One of these transceiver chips transmits while the other

receives a signal. This repeater board has a maximum output power of ten milliwatts, compared

to a repeater’s typically much higher output power. My concern in purchasing this board was that

due to the antenna spacing I would potentially have issues with the transmitter overloading the

receiver, however after I received the board and got it up and running, that doesn’t appear to be a

problem. It also helps that the repeater’s transmit and receive frequencies are offset by five

megahertz.

Morris 9

Figure 2: MMDVM_HS_HAT_DUPLEX

 For the software, I decided to use the standard Pi-Star software created by Andy Taylor,

MW0MWZ, an amateur radio operator in the United Kingdom. Pi-Star is a distribution of Linux

based upon Raspbian Linux. It has been heavily modified to include numerous pieces of a

software for amateur radio as well as another interesting feature that makes the filesystem read-

only to protect the Raspberry Pi’s operating system during an unexpected shutdown. The

filesystem remains read-only unless you specifically run the command, “rpi-rw” to make it

read/write. In my limited experience, this seems to work pretty well; I haven’t had any issues

with unexpected shutdowns causing data loss. Pi-Star also features an online dashboard that

allows you to view all of the activity on the repeater as well as to configure and control the

repeater.

 My next step was to register my callsign for DSTAR and to get a CCS7 or DMR ID

number. Registering my callsign was as easy as visiting the website for the closest DSTAR

repeater, which happens to be W3EXW in Pittsburgh, Pennsylvania. After registering with this

repeater/gateway, I next had to setup terminal ID’s. These terminal ID’s identify your radio on

Morris 10

the DSTAR network. In my case I setup two ID’s, one for me personally, with a blank ID which

would identify my handheld DSTAR radio and another with the ID, “B” which would identify

my repeater. The letter “B” corresponds to the module letter of the repeater I am setting up.

Since the repeater is on the 70cm or 440-megahertz band, the standard is to use the letter “B” for

the module.

Figure 3: Terminal ID's for DSTAR

Next, I needed a DMR ID or CCS7 Number for the DMR mode to work. This application

process is done through the register.ham-digital.org website. DMR routing uses numbers instead

of callsigns, so a DMR ID or CCS7 Number is like a phone number. It is used to identify the user

on the DMR network. This ID corresponds to the person’s callsign and name in the DMR-

MARC database. DMR-MARC is the Digital Mobile Radio – Motorola Amateur Radio Club.

After getting the DMR ID, I was ready to configure Pi-Star. The first thing I had to do

was configure the WiFi to work with the University’s enterprise network. I followed the

instructions I found online here https://gist.github.com/chatchavan/3c58511e3d48f478b0c2. This

involved using an ethernet crossover cable between my laptop and the Raspberry Pi, so that I

could connect to it and reach the Pi-Star dashboard. Once on the dashboard I went to the

Morris 11

configuration tab, then the expert tab, and then to the SSH access tab and logged into SSH. From

here I was able to edit the network interfaces file to include the following for WLAN0:

auto wlan0
allow-hotplug wlan0
iface wlan0 inet dhcp
 pre-up wpa_supplicant -B -Dwext -i wlan0 -c/etc/wpa_supplicant/wpa_supplicant.conf
 post-down killall -q wpa_supplicant

After editing the network interfaces file, was ready to edit the wpa_supplicant file. This file is

where the network information and credentials are stored. The first problem I encountered was

that I did not want to store my password to the network in plain text. Luckily the instructions I

was following provided information on how to use a hash of the password in the wpa_supplicant

file. So, I hashed the password using the following code in SSH:

echo -n 'YOUR_PASSWORD' | iconv -t utf16le | openssl md4

After copying the hash of my password, I cleared my history in the bash prompt and exited SSH.

I then went to the expert WiFi editor on the dashboard and entered the following, putting the

password hash after the line “password=hash:”.

Figure 4: Configuring Enterprise WiFi

Morris 12

The next problem I encountered was also related to the WiFi. Pi-Star would only connect

to the network occasionally. I determined the underlying cause to be the amount of time it takes

to authenticate to WIRELESS-PITTNET. The solution to this problem was to turn off the

WLAN interface and turn it back on, after Pi-Star has booted. This was accomplished by creating

a bash script with the following line it:

sudo ifdown wlan0 && sudo ifup wlan0

Since I had planned on adding a Nextion touch screen display to the project, I added a button on

the control page of the screen to execute the script and reset the WLAN interface. This seemed to

solve the problem.

 On a related note, if you are just setting up a repeater on a home WiFi network, there is a

tool that will create the wpa_supplicant file for you and makes this task super simple. On the

pistar.uk website, there is a tool called “WiFi Builder.” It gives you an online form to enter your

network name and password and then it will download the wpa_supplicant file to your computer.

After downloading the file, it is placed into the “boot” partition of the SD card on the Raspberry

Pi. After booting the Raspberry Pi, this wpa_supplicant file replaces the current wpa_supplicant

file and then Pi-Star reboots and connects to the network specified in this new file.

 This repeater will work without port forwarding; however, it will not have full

functionality in that other repeaters will not be able to route callsigns to it nor will the users be

able to connect into my repeater. Pi-Star has the option to forward these ports automatically via

Universal Plug N Play (UPNP). I have this turned off on my Pi and on my home network’s

router, so at home I forwarded the ports automatically. In order to forward ports, you must have a

static IP address on the Pi. At home I reserved an IP address for my Raspberry Pi and forwarded

the following ports to it, which I found on the DSTAR 101 website.

Morris 13

Port / Port Range Protocol
20001 - 20007 DPlus - UDP
30001 - 30007 DExtra - UDP
30051 - 30057 DCS - UDP

30061 CCS - UDP
40000 - 40005 G2 - UDP

9007 ircDDB - TCP
8082 forwarded to internal port 80 Dashboard - TCP

10022 ircDDBRemote - UDP

 After setting up the network on the Raspberry Pi, I had to configure the two modes,

DSTAR, and DMR. I started by configuring only DSTAR in order to test the device and setup

the transmit and receive offset of the MMDVM. On the configuration page, I enabled DSTAR

and set the “RF Hangtime” and “Net Hangtime” to ten. RF Hangtime is the amount of time in

seconds after the end of the last radio transmission, that the repeater will remain in DSTAR

mode. Net Hangtime is essentially the same thing, but it applies to the end of the last

transmission coming through the internet from the DSTAR network. After enabling the DSTAR

mode, I needed to configure the general repeater information.

 I began configuring the repeater information by first changing the hostname from “pistar”

to my callsign, “n3tdm”. Then I entered the node callsign as my personal callsign and the

CCS7/DMR ID to my personal DMR ID, with a supplemental station ID (SSID) of “01”. This

SSID would prevent confusing the DMR network with two radios that have the same SSID. It is

a way of uniquely identifying my individual radios, the handheld radio I would be talking on and

the repeater. I also chose to make the repeater public instead of private. Setting this to public

means that any licensed amateur radio operator can use the repeater. If this setting is set to

private, the repeater will only accept your callsign. You can see the information I have entered in

Figure 5, below.

Morris 14

Next came the task of finding a set of frequencies that I could use for my repeater.

Normally on a full-size repeater, this is done through a repeater coordination organization, that

makes sure your repeater and its coverage area will not interfere with any other coordinated

repeater. This helps to keep interference to a minimum. To begin, I looked up the allocated

frequencies for repeaters in the 70-centimeter (70cm) amateur radio band and found that the

repeater sub-band is in the range of 440 to 450 megahertz. Next, I checked some online

directories of repeaters and asked another local amateur radio operator named, Ted Leonard,

W3VG, about the local 70-cm repeaters. Ted is a local amateur radio operator that has installed,

tested, and maintained repeaters for more years than I have been alive. I also considered the fact

that this repeater was going to be portable and was going to produce ten milliwatts or less due to

losses in the antennas and coax cables. I settled on a repeater transmit frequency of 443

megahertz with a standard five-megahertz positive split, giving me a receive frequency of 448

megahertz.

Figure 5: General Configuration

 After configuring the general parts of the receiver, I moved on to configure DSTAR. In

this section I had to set the RPT1 callsign, the remote password for the ircDDBRemote App, the

default reflector, and the ircDDBGateway language. The RPT1 callsign must be 8 characters in

Morris 15

length, but the Pi-Star software does this for you. So, I entered my callsign, “N3TDM”, and then

selected module letter “B” which is the standard module used for the 70cm band. If my repeater

were on the two-meter band (144 to 148 megahertz), I would have used module letter “C”. I next

set the remote password which would be used with the ircDDBRemote application on my phone

or computer. It is important to note that there are some characters that Pi-Star does not work

with, for instance the dollar sign ($). When I tried to use the dollar sign in my password, Pi-Star

would not let me connect the app to the gateway. Once I removed this character from my

password, I had no problem making the connection. The next item is the default reflector. A

reflector is similar to a conference server and if it is set as the default and “startup” is marked,

the repeater will automatically connect to the reflector on boot. I did not want this feature, as I

wanted to have more control over which reflectors I connect to. I set the default reflector to

REF001C and checked the “manual” radio button. Setting this to manual means that the repeater

must be manually connected to the default reflector and will not connect on boot.

 The next setting is the Amateur Packet Reporting System (APRS) host. This is the server

that GPS location data will be sent to for both the repeater and any user who transmits their

coordinates to the repeater. I chose the “rotate.aprs2.net” server based on the fact that it is a tier

two server and will cycle through various aprs2.net core servers increasing reliability that the

packets will reach the APRS network. DSTAR uses D-PRS or DSTAR Packet Reporting System

which converts the data strings from the GPS in Icom (a DSTAR radio manufacturer) radios into

APRS strings, according to Peter Loveall. This location data can be viewed on the aprs.fi website

which tracks APRS stations on a map.

Morris 16

Figure 6: DSTAR Configuration

The next step is to configure the transmit and receive offset. On the back of the board

there is a sticker that tells you an estimated transmit and receive offset. In my case, the sticker

listed 500 for the transmit offset and the receive offset. So, I set those in the MMDVMHost

expert editor and then I saved it. The next step is to transmit into the pi using DSTAR and see if

it receives the signal. It will tell you on the dashboard if it received the signal. Mine did work,

but wasn’t transmitting any audio out, so that told me to change the transmit invert in the

MMDVMHost configuration. After setting the transmit inversion to one for on, I transmitted into

the repeater again using an echo test and was able to receive the transmitted audio when the

repeater retransmitted my signal.

Figure 7: MMDVMHost Configuration

Morris 17

To set the transmit and receive offsets to be more accurate, I used a Hewlett Packard

service monitor that my friend Ted owns. It reads the frequency that the repeater is transmitting

on and tells me what it is, down to one hertz. I set my transmit frequency to 443 megahertz and

the repeater was transmitting on 442.999200 megahertz, so the transmit offset on the repeater

should be set to 800. In Figure 7, I had tested the repeater’s transmit frequency after setting the

transmit offset to 200.

 Setting the receive offset is a bit more complicated and I set that by watching the BER or

Bit Error Rate. The Bit Error Rate should be less than five percent, however even at five percent,

audio can drop in and out. I had set my receive offset to 500, based on the sticker on the back of

the repeater board. My bit error rate was very low to begin with so I did not adjust the receive

offset anymore and left it at 500.

 The next step is to enable DMR and configure it. In the MMDVMHost configuration file,

I found the section for DMR and enabled it by setting enable to “1”. I set the hangtime to 10

seconds and left everything else as default. I made sure to use color code one as well. Color

codes are a way of grouping repeaters.

Morris 18

Figure 8: Enabling DMR in MMDVMHost Expert Editor

 The next step was to setup the DMR network by first turning it on and then telling my

repeater what server to connect to. There are two DMR networks, DMR-MARC and

Brandmeister. DMR-MARC is a closed network and is only open to Motorola DMR repeaters, so

I chose to use Brandmeister. I went to the brandmeister.network website and found the closest

server which is Brandmeister 3108, which is located in the USA. I found the IP address of the

server on the same page. I used that IP address as the address and left the ports as the default.

The default password is used for most of these servers, which happens to be “passw0rd”. This is

also where we turn on slot one and slot two. The two slots are called time slots and are

essentially channels on the same frequency. This means that DMR can support two entirely

different conversations on the same frequency at the same time.

Figure 9: Configuring DMR Network

Morris 19

 At this point the repeater is working, but I also wanted to add a Nextion display to this

project. A Nextion display is a human machine interface display that processes code sent to it by

a driver on the Raspberry Pi. The Nextion Driver from ON7LDS, gave me some problems while

trying to install it. There is an automatic installation script, but for some reason the display did

not update fast enough with the automatically installed Nextion Driver. I ran the install script and

then ran most of the commands in the script manually. I also changed the source code of the

Nextion Driver to output the CPU temperature in Fahrenheit instead of Celsius. The Pi-Star

software comes with a driver for the Nextion display already installed, but I wanted to add some

buttons to my display and in order to process the bash commands from those buttons, you need

the Nextion Driver installed and the display needs to be connected to the Raspberry Pi using a

USB to TTL Serial adapter. I used a PL2303 USB to TTL adapter.

Figure 10: Nextion Display Front Figure 11: Nextion Display Back

 After installing the Nextion Driver, I needed to create a Nextion Layout. I modified one

from PD0DIB, an amateur radio operator in the Netherlands. I changed his layout to have the

transmit and receive frequencies be populated from the MMDVMHost configuration file instead

of having them manually typed into the display in static text. I also added a system status page

and an information page. On the information page, I had to add the text boxes for CPU load, IP

address, transmit and receive frequencies, and CPU temperature. These boxes are targeted by the

Morris 20

Nextion Driver using their object labels. For instance, CPU load is labeled “cpuload” and IP

address is labeled “t3”. So, the Nextion Driver sends the information to the display’s objects and

shows it in the corresponding text box. I also had to edit the background images used in the

Nextion layout because they had some text embedded in the images that I did not want on my

layout.

 Figure 12: Nextion Layout Main Screen Figure 13: Nextion Layout Status Screen

On the control screen, I added buttons to reboot, shutdown, start and stop MMDVMHost,

and reset the WLAN0 interface. The buttons contain code in a touch release event. I found the

code on the Nextion Driver GitHub from ON7LDS. In this event the code looks like the

following:

 printh 2A
 printh F1
 printh <linux command>
 printh FF
 printh FF
 printh FF

Morris 21

Figure 14: Nextion Layout Control Screen

 The layout was created using Nextion Editor that is produced by Itead Nextion. The

editor is a graphical interface used to create these layouts. It looks very similar to Visual Studio,

but there really is not much code involved. It is more graphical than anything. As I said above,

the text boxes have labels and the code in Nextion Driver targets those objects to display the

information from MMDVMHost in those objects/text boxes. After creating the layout in Nextion

Editor, you can either compile the layout into a *.tft file and put it on an SD card to image the

screen, or you can connect the screen to your Windows PC with a USB to TTL Serial adapter

and flash the screen directly, which is what I did. The USB to TTL Serial adapter I used was

plug and play, but I did need to find the serial port or COM port it was assigned by Windows. I

did this in Device Manager and then set the COM port in the Nextion Editor and uploaded the

screen layout to the display.

Morris 22

Figure 15: Nextion Editor Showing Main Screen

 I also wanted to create a 3D printed case for this project, but was unable to complete it in

time. I used tinkerCAD.com to create the 3D rendering of a box with mounting holes for the

Raspberry Pi. That was all I could accomplish. I learned that 3D modeling is difficult and that

there are a lot of different tools used to create something that seems so simple, like a box.

Figure 16: 3D Case Bottom Design

 In conclusion, I learned a great deal of useful information from working on this capstone

project. Doing this as my capstone project allowed me to learn more about the Raspberry Pi,

Morris 23

Raspbian Linux, and amateur radio digital modes. I learned that DSTAR, which was designed

for amateur radio was much simpler to implement than DMR which was designed for

commercial use and adapted for use with amateur radio. I also learned more about repeaters and

how duplexers work to isolate signals from interfering with the repeater. The duplexers also

allow the repeater to use the same transmit and receive antenna. I gained some experience using

a service monitor to analyze a radio signal and set the transmit frequency offset. I gained a lot of

experience working with the WiFi and the trouble that gave me when trying to connect to the

enterprise WiFi on campus. I also gained real world experience with port forwarding on my

home router. I also learned how difficult 3D modeling can be when designing a simple box to

use as a case for this project. Perhaps the most important thing I learned was about myself and

not about computers; I learned that I need to do better time management and not to expect

success. While my project was successful in my opinion, I learned not to expect it to be an easy

road to the end. I learned that something will inevitably go wrong and I learned how to find

answers to solve my own problems.

Overall, I think this project turned out well, but there are a few things I would have done

differently. I would have not taken on so much of the project in 16 weeks, as it was a lot of work

to do in such little time. I also would have liked to have added more features to Pi-Star, but this

project is just the beginning for me as I am positive I will continue working on it and improving

it to learn even more to help my fellow amateur radio operators in the community with their

digital repeaters. I also would have liked to build a full-size repeater, but due to cost and space, I

am happy to have been able to experiment with repeaters on a small scale.

Morris 24

Works Cited

ARRL. Amateur Radio Emergency Communication. n.d. 10 November 2018.

<http://www.arrl.org/amateur-radio-emergency-communication>.

—. Ham Radio History. n.d. 10 November 2018. <http://www.arrl.org/ham-radio-history>.

Bentvision LLC. DMR Talkgroups. n.d. 11 November 2018.

<http://www.dmrfordummies.com/talkgroups/>.

—. What is DMR? n.d. 11 November 2018. <http://www.dmrfordummies.com/library/>.

BrandMeister. What is BrandMeister. n.d. 11 November 2018.

<https://wiki.brandmeister.network/index.php/What_is_BrandMeister>.

Butler, Donald I. How to Use Amateur (Ham Radio) Repeaters. n.d. 11 November 2018.

<http://www.hamuniverse.com/repeater.html>.

DSTAR 101. What is DSTAR? n.d. 10 November 2018.

<http://www.dstar101.com/whatisdstar.htm>.

DSTAR Info. Frequently Asked Questions. n.d. 11 November 2018.

<http://dstarinfo.com/faq.aspx>.

FCC. Amateur Radio Service. 6 July 2017. 10 November 2018.

<https://www.fcc.gov/wireless/bureau-divisions/mobility-division/amateur-radio-

service>.

Icom America. "dratsbrochure.pdf." 15 May 2009. Icom America. 10 November 2018.

<http://www.icomamerica.com/en/products/amateur/dstar/dstar/dratsbrochure.pdf>.

Loveall, Peter. D-PRS. n.d. 8 December 2018. <http://www.aprs-is.net/dprs.aspx>.

ON7LDS. Nextion Driver. January 2018. 8 December 2018.

<https://github.com/on7lds/NextionDriver/tree/master/Nextion>.

